Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethyl (2S*)-2-[(2R*, $\left.\mathbf{2}^{\prime} R^{*}, 5 S^{*}\right)-2^{\prime}, 5-d i m e t h y l-$ 5^{\prime}-oxoperhydro-[2,2']]bifuranyl-5-yl]-2hydroxyethanoate

Simon J. Coles* and Michael B. Hursthouse

Department of Chemistry, Southampton University, Southampton SO17 1BJ, England

Correspondence e-mail: s.j.coles@soton.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.030$
ωR factor $=0.075$
Data-to-parameter ratio $=9.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

The molecular structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6}$, has four chiral centres, for which only the relative configuration has been unequivocally determined. The molecules form a supramolecular array of infinite one-dimensional chains.

Comment

The title compound, (I) (Fig. 1), was synthesized as part of a study of the KMnO_{4}-mediated oxidative cyclization of 1,5,9trienes (Brown et al., 2002). The molecule is composed of two substituted furan moieties connected to each other at the 2and 5-positions, and exhibits bond lengths and angles consistent with expected values (Orpen et al., 1992) derived from structures in the Cambridge Structural Database (Allen, 2002).

(I)

The molecular structure of (I) contains two furan rings which, from puckering analysis (Cremer \& Pople, 1975), adopt envelope (about C3) and twisted (about C7-C8) conformations. The molecule contains four chiral centres which, for the given absolute configuration, are $\mathrm{C} 4=R, \mathrm{C} 6=R, \mathrm{C} 9=S$ and $\mathrm{C} 11=S$.

The crystal structure is a one-dimensional chain arising from a hydrogen-bonded $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{i}}$ interaction [symmetry code: (i) $-x,-y, z+\frac{1}{2}$], with a donor-acceptor separation of 2.8931 (16) \AA.

Experimental

Ethyl (2Z,6E)-3,7,11-trimethyl-2,6,10-dodecatrienoate was oxidized with KMnO_{4} followed by $\mathrm{Pb}(\mathrm{OAc})_{4}$ to afford the title compound, (I), as a colourless oil which solidified on standing (Brown et al., 2002). Recrystallization from ethyl acetate/hexane gave colourless plates suitable for X-ray structure determination.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6} \\
& M_{r}=286.32 \\
& \text { Orthorhombic, } P n a 2_{1} \\
& a=9.3133(3) \AA \AA \\
& b=15.4441(4) \AA \\
& c=9.8424(3) \AA \\
& V=1415.69(7) \AA^{3} \\
& Z=4 \\
& D_{x}=1.343 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Received 4 March 2003
Accepted 12 March 2003
Online 21 March 2003

Figure 1
View of (I) (50\% probability displacement ellipsoids), with specific H atoms retained to show the relative configuration.

Data collection

Bruker-Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SORTAV; Blessing, 1997)
$T_{\text {min }}=0.973, T_{\text {max }}=0.990$
14735 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.075$
$w R\left(F^{2}\right)=0.075$
$S=1.08$
1717 reflections
186 parameters
H -atom parameters constrained

1717 independent reflections 1555 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 12$
$k=-19 \rightarrow 20$
$l=-12 \rightarrow 12$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0417 P)^{2}\right. \\
\quad \quad+0.1548 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.005 \\
\Delta \rho_{\max }=0.17 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.009(2)
\end{array}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	2.10	$2.8931(16)$	157

Symmetry code: (i) $-x,-y, \frac{1}{2}+z$.
Compound (I) crystallized in the non-centrosymmetric space group Pna $_{1}$; however, due to the insignificant anomalous scattering, the Flack (1983) parameter refined is indeterminate and so Friedel pairs were merged before the final refinement. H atoms are included in constrained positions, with torsion angles allowed to freely refine in the case of methyl and hydroxy groups.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003).

The authors thank the EPSRC for funding of the crystallographic facilities.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Brown, R. C. D., Bataille, C. J., Hughes, R. M., Kenney, A. \& Luker, T. J. (2002). J. Org. Chem. 67, 8079-8085.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1992). International Tables for Crystallography, Vol. C. Dordrecht: Kluwer Academic Publishers.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

